1) (10 PTS.) Let A, B be events with Pr[A] = .2, Pr[B] = .6, and $Pr[A \cap B] = .1$. Find Pr[A|B].

$$P_r(A|B) = \frac{P_r(A\cap B)}{P_r(B)} = \frac{1}{6} = \frac{1}{6}$$

Other Version:

$$P_{r}(A) = .2$$

 $P_{r}(B) = .7$

PriANB)=,1

2) (10 PTS.) Let A, B be events with Pr[A] = .2, Pr[B] = .6, and $Pr[A \cap B] = .1$. Find Pr[B|A].

$$Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)} = \frac{1}{2} = \frac{1}{2}$$

Other Version

$$\frac{1}{2} = \frac{1}{2}$$

4) (10 PTS.) Let A, B be events with Pr[A] = .2, Pr[B] = .6, and $Pr[A \cap B] = .1$. Find Pr[B'|A].

$$P_r(B'|A) = \frac{P_r(B'\cap A)}{P_r(A)} = \frac{.1}{.2} = \frac{1}{2}$$

Other Version

$$\frac{P_r(B'\cap A)}{P_r(A)} = \frac{1}{2} = \frac{1}{2}$$

Answer:

4) (10 PTS.) There are 7 men and 3 women in a room. Two of these 10 people are selected at random. If both people selected are of the same sex, then what is the probability that both are women?

$$P_{r}(2W|SS) = \frac{P_{r}(2W \cap SS)}{P_{r}(SS)} = \frac{P_{r}(2W)}{P_{r}(SS)} = \frac{\binom{3}{2}/\binom{10}{2}}{\binom{3}{2}/\binom{10}{2}} = \frac{3}{3+21} = \frac{1}{8}$$

OTHER VERSION
$$P_{r}(2M|SS) = \frac{P_{r}(2M \cap SS)}{P_{r}(SS)} = \frac{P_{r}(2M)}{P_{r}(SS)} = \frac{(\frac{7}{2})/(\frac{10}{2})}{(\frac{7}{2})/(\frac{10}{2})} = \frac{21}{21+3}$$

$$= \frac{7}{8}$$

Answer:	

5) (10 PTS.) There are 7 men and 3 women in a room. Two of these 10 people are selected at random. If it is known that at least one women was selected, then what is the probability that both are women?

$$P_{r}(2W | AIW) = \frac{P_{r}(2W | AIW)}{P_{r}(AIW)} = \frac{P_{r}(2W)}{P_{r}(AIW)} = \frac{\binom{3}{2}/\binom{3}{10}}{\binom{3}{10}+\binom{2}{2}}$$
$$= \frac{3}{21+3} = \frac{1}{8}$$

OTHER VERSION
$$P_{r}(2M | AIM) = \frac{P_{r}(2M | AIM)}{P_{r}(AIM)} = \frac{P_{r}(2M)}{P_{r}(AIM)} = \frac{\frac{7}{2}}{\frac{7}{2}} \frac{\frac{7}{2}}{\frac{7}{2}} = \frac{1}{2}$$

Answer: