1) (10 PTS.) Find the coordinates of the x-intercept and of the y-intercept of the line given by 3x + 4y = 18.

$$\frac{x-\text{intercept}}{y=0}$$
 $3x+40=18 \Rightarrow x=6$

Answer:
$$x$$
 intercept = $(\underline{6}, 0)$ y intercept = $(0, \underline{9/2})$

2) (20 PTS.) Find the equation of the line that passes thru the points (3,-2) and (2,10). Express your answer in the form y = mx + b by filling in the blanks below for the values of m and b.

$$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{10 - (-2)}{2 - 3} = \frac{12}{-1} = -12$$

$$y = -12x + b$$
SUBSTITUTE X=3, y=-2
$$-2 = -12.3 + b$$

$$-2 = -36 + b$$

$$34 = b$$
Chick:
$$-2 = -12.3 + 34 @ (3,-2)$$

$$|0 = -12.2 + 34 @ (2,10)$$

1

Answer: Fill in the blanks: y = -12 x + 34

3) (20 PTS.) Find the point of intesection of the two lines given by 2x + 10y = 4 and 5x + 2y = -1.

$$2x + 10y = 4$$

$$5x + 2y = -1$$

$$10x + 50y = 20$$

$$10x + 4y = -2$$

$$0x + 46y = 22$$

$$y = \frac{22}{46} = \frac{11}{23}$$

SUBSTITUTE THIS INTO 2x+10y=9

$$2x + 10 \cdot \frac{11}{23} = 4$$

$$X = \frac{4 - \frac{110}{23}}{2} = 2 - \frac{55}{23} = \frac{46}{23} - \frac{55}{23} = \frac{9}{23}$$

Answer: $\left(\frac{9}{23}, \frac{11}{23}\right)$