
1) Shown below is the transition diagram for a Markov process with two states (states 1 and 2):

a) (10 PTS.) Let the transition matrix for this process be P. Fill in the blanks below for the entries of P.

$$P = \frac{1}{2} \left(\frac{.7}{.1} , \frac{.3}{.9} \right)$$

$$P = \frac{1}{2} \left(\frac{.7}{.1}, \frac{.3}{.9} \right) \qquad \left(\begin{array}{c} .7, .3 \\ .1, .9 \end{array} \right) \left(\begin{array}{c} .7, .3 \\ .1, .9 \end{array} \right) = \left(\begin{array}{c} .52, .48 \\ .16, .94 \end{array} \right)$$

b) (10 PTS.) Fill in the blanks:

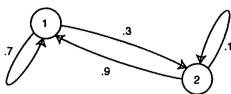
$$P^{2} = \begin{pmatrix} .52 & .48 \\ .16 & .84 \end{pmatrix}$$

c) (10 PTS.) Find the probability that the system will be in state 1 after TWO transitions, if it starts out in state 2.

Answer:
$$Pr[State 1] = 16$$

d) (10 PTS.) Find the probability that the system will be in state 1 after TWO transitions, if it starts out with an initial state vector of (1/2, 1/2). That is, initially there is a 1/2 probability that the system is in state 1, and a 1/2 probability that it is in state 2.

$$(1/2, 1/2)$$
 $(.52.48)$ = $(\frac{1}{2}.52 + \frac{1}{2}.16, m)$ = $(.34, m)$


Answer:
$$Pr[State 1] = .34$$

e) (10 PTS.) Find the probability that if the system starts out in state 1, then in the next two transitions it will be in state 2 then state 1. In other words, $Pr[1 \rightarrow 2 \rightarrow 1] = ?$

$$1 - \frac{.3}{.2} = \frac{.1}{.3} \cdot 1 = .03$$

Answer:
$$Pr[State 1] = .03$$

1) Shown below is the transition diagram for a Markov process with two states (states 1 and 2):

a) (10 PTS.) Let the transition matrix for this process be P. Fill in the blanks below for the entries of P.

$$P = \frac{1}{2} \left(\frac{\frac{1}{7}}{\frac{9}{1}} \frac{\frac{2}{3}}{\frac{1}{1}} \right)$$

$$P = \frac{1}{2} \left(\frac{.7}{.9} \frac{.3}{.1} \right) \qquad \left(\begin{array}{cc} .7 & .3 \\ .9 & .1 \end{array} \right) \left(\begin{array}{cc} .7 & .3 \\ .9 & .1 \end{array} \right) = \left(\begin{array}{cc} .76 & .24 \\ .72 & .28 \end{array} \right)$$

b) (10 PTS.) Fill in the blanks:

c)
$$P^2 = \begin{pmatrix} .76 & .24 \\ .72 & .28 \end{pmatrix}$$

c) (10 PTS.) Find the probability that the system will be in state 1 after TWO transitions, if it starts out in state 2.

Answer:
$$Pr[State 1] =$$
 , \bigcirc 2

d) (10 PTS.) Find the probability that the system will be in state 1 after TWO transitions, if it starts out with an initial state vector of (1/2, 1/2). That is, initially there is a 1/2 probability that the system is in state 1, and a 1/2 probability that it is in state 2.

$$(1/2,1/2)$$
 $(.76.24)$ = $(1/2,76+1/2,72, ~)$ = $(.74, ~)$

Answer:
$$Pr[State 1] = 74$$

e) (10 PTS.) Find the probability that if the system starts out in state 1, then in the next two transitions it will be in state 2 then state 1. In other words, $Pr[1 \rightarrow 2 \rightarrow 1] = ?$

Answer:
$$Pr[State 1] = , 27$$