A sample space is a set consisting ofthe outcomes of some procedure. It will serve as the universal set when trying to solve probability problems.

The book refers to "experiments" rather than procedures.
The best way to show what these are and how they are set up is by example:

EXAMPLE: Two batteries are tested, one after the other, and the results are recorded as to whether or not they are charged or not charged.
Here is one way to write down the sample space:

$$
S=\{C C, C N, N C, N N\}
$$

where it is understood (because we are now agreeing to do this) that

CC - represents the outcome in which the first battery tested was charged and so was the second battery tested.

CN - first charged, second not charged

EXAMPLE: Two batteries are tested, one after the other, and the results are recorded as to whether or not they are charged or not charged.
Here is one way to write down the sample space:

$$
S=\{C C, C N, N C, N N\}
$$

where it is understood (because we are now agreeing to do this) that

NC - first not charged, second charged

NN - first not charged, second not charged information needed to solve a problem.
EXAMPLE: Two batteries are tested, one after the other, and the results are recorded as to whether or not they are charged or not charged.
Here is one way to write down the sample space:

$$
S=\{C C, C N, N C, N N\}
$$

This notation is by our own convention and has to be explained as partof the answer.
The outcomes CC CN NC and NN are elements of the set S, our sample space.

EXAMPLE: Two batteries are tested, one after the other, and the results are recorded as to whether or not they are charged or not charged.
Here is another way to write down the sample space:
Let

$$
B=\{C, N\}
$$

where C represents a charged battery and N represents a battery that is not charged.
Set

$$
S=B \times B=\{(C, C),(C, N),(N, C),(N, N)\}
$$

These is a set of ordered pairs. (C, N) has obvious interpretation - first battery charged, second not charged.

EXAMPLE: Two batteries are tested, one after the other, as to whether or not they are charged or not charged.
Either way the sample space can be represented by a TREE:

The outcomes can be seen on the tips of the branches, and record the results (or intermediate outcomes) seen as you travel out from the base to the tips.

EXAMPLE: Two batteries are tested, one after the other, as to whether or not they are charged or not charged.
Either way the sample space can be represented by a TREE:

NEXT EXAMPLE: A coin is flipped 3 times. The result of each toss (heads or tails) is recorded (in order).
Let

$$
R=\{H, T\}
$$

and let
$S=R \times R \times R=$
$\{(H, H, H),(H, H, T),(H, T, H),(T, H, H),(H, T, T),(T, H, T),(T, T, H),(T, T, T)\}$
This has obvious interpretation. For example:

NEXT EXAMPLE: A coin is flipped 3 times. The result of each toss (heads or tails) is recorded (in order).

Let

$$
R=\{H, T\}
$$

and let
$S=R x R x R=$

$$
\begin{aligned}
& \{(H, H, H),(H, H, T),(H, T, H),(T, H, H),(H, T, T),(T, H, T),(T, T, H),(T, T, T)\} \\
& \begin{array}{l}
\text { This represents the outcome of having } \\
\text { flipped a heads, then a tails, then } \\
\text { a heads. }
\end{array}
\end{aligned}
$$

S is the sample space.

EXAMPLE: There are two bowls - bowl A and bowl B. In bowl A is a red ball, a white ball, and a green ball. In bowl of B is a red and a white ball.

A procedure consists of first picking a bowl A or B, recording the pick, and then picking a ball from the chosen bowl and recording the color. Write down the appropriate sample space and corresponding tree.

A procedure consists of first picking a bowl A or B, recording the pick, and then picking a ball from the chosen bowl and recording the color. Write down the appropriate sample space and corresponding tree.
EXAMPLE:

A

B

A procedure consists of first picking a bowl A or B, recording the pick, and then picking a ball from the chosen bowl and recording the color. Write down the appropriate sample space and corresponding tree.

EXAMPLE:

A procedure consists of first picking a bowl A or B, recording the pick, and then picking a ball from the chosen bowl and recording the color. Write down the appropriate sample space and corresponding tree.

Second stage:

3 possibilities if bowl A was selected, and...

A procedure consists of first picking a bowl A or B, recording the pick, and then picking a ball from the chosen bowl and recording the color. Write down the appropriate sample space and corresponding tree.

$$
S=\{A W, A G, A R, B W, B R\}
$$

where, for example, AW represents the outcome of picking bowl A and then the white ball.

EXAMPLE: NOT ALL TREE BRANCHES REACH THE TOP Three VCR tapes are checked one after another until either they have all been tested or one defective tape has been found. Draw a tree and then specify the sample space.

EXAMPLE: NOT ALL TREE BRANCHES REACH THE TOP. Three VCR tapes are checked one after another until either they have all been tested or one defective tape has been found. Draw a tree and then specify the sample space.
(A) Continue procedure if tape acceptable.
(D) Terminate procedure if a tape defective.

Stage one:
Test tape 1

EXAMPLE: NOT ALL TREE BRANCHES REACH THE TOP. Three VCR tapes are checked one after another until either they have all been tested or one defective tape has been found. Draw a tree and then specify the sample space.

$\square \square$
EXAMPLE: NOT ALL TREE BRANCHES REACH THE TOP.
Three VCR tapes are checked one after another until either they have all been tested or one defective tape has been found. Draw a tree and then specify the sample space.

THIS IS THE TREE

EXAMPLE: NOT ALL TREE BRANCHES REACH THE TOP.
Three VCR tapes are checked one after another until either they have all been tested or one defective tape has been found. Draw a tree and then specify the sample space.

The sample space is:
$S=\{A A A, A A D, A D, D\}$
where, for example, AAD represents
the outcome of first getting two
acceptable tapes then a defective.

MULTIPLICATION PRINCIPLE:

EXAMPLE: You are going to order a sandwich. First you have to choose beef, ham, or turkey. Next you have to choose rye or white for the bread. How many elements are in the sample space?
SOLUTION: One way to do the problem is to write out the sample space, and count:

$$
S=\left\{B W, B R, \frac{H W, H R, T W, T R\}}{T_{\text {ham }} \text { on white }}\right.
$$

ANSWER: 6

TREE the outcome of first getting two acceptable tapes then a defective.
EXAMPLE: NOT ALL TREE BRANCHES REACH THE TOP.
Three VCR tapes are checked one after another until either they have all been tested or one defective tape has been found Draw a tree and then specify the sample space.

FINAL SOLUTION

The sample space is:
$S=\{A A A, A A D, A D, D\}$ where, for example, AAD represents

MULTIPLICATION PRINCIPLE:
EXAMPLE: You are going to order a sandwich. First you have to choose beef, ham, or turkey. Next you have to choose rye or white for the bread. How many elements are in the sample space?
SOLUTION: Another way is to draw a tree and count:

MULTIPLICATION PRINCIPLE:

EXAMPLE: You are going to order a sandwich. First you have to choose beef, ham, or turkey. Next you have to choose rye or white for the bread. How many elements are in the sample space?
SOLUTION: Another way is to draw a tree and count:

However, notice that there are 3 choices in the first stage, and for EACH one of those there are 2 choices in the second stage.

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or an O. How many passwords are possible? Example: 34ZED

EXAMPLE: A password consists of a number 1 through 99. followed by three letters. None of the letters is to be an I or an O. How many passwords are possible? Example: 34ZED
SOLUTION: There are 24 possibilities for each letter and 99 possibilities for the number.

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or an O. How many passwords are possible? Example: 34ZED SOLUTION: There are 24 possibilities for each letter and 99 possibilities for the number.

ANSWER: $99 \times 24 \times 24 \times 24$

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or an O. How many passwords are possible? Example: 34ZED SOLUTION: What about the tree? It's messy.

First stage:

99 branches

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or an O. How many passwords are possible? Example: 34ZED SOLUTION: What about the tree? It's messy.

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or an O. How many passwords are possible? Example: 34ZED SOLUTION: What about the tree? It's messy.

\square

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or an O. How many passwords are possible? Example: 34ZED SOLUTION: What about the tree? It's messy.

99 branches

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or an O. How many passwords are possible? Example: 34ZED SOLUTION: What about the tree? It's messy.

ANSWER: $99 \times 24 \times 24 \times 24$ branch tips 99 branches

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or a O. How many passwords do not include the letter Q ?
SOLUTION:
There are 23 letters excluding I, O, and Q.
$99 \times 23 \times 23 \times 23$

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or a O. How many passwords are there where the first letter is not a Q ?

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or a O. How many passwords do not include the letter Q ? SOLUTION:

EXAMPLE: A password consists of a number 1 through 99, followed by three letters. None of the letters is to be an I or a O. How many passwords are there where the first letter is not a Q?
SOLUTION:

ANSWER: $99 \times 23 \times 24 \times 24$

CROSS PRODUCTS: How many elements are in $A \times B \times C$? $A \times B \times C=\{(a, b, c): a \in A, b \in B, c \in C\}$. To chose an element from this set, you have to fill in 3 "blanks" to make up the ordered triples that are in $A \times B \times C$.

$$
(-,-,)
$$

CROSS PRODUCTS: How many elements are in $A \times B \times C$? $A \times B \times C=\{(a, b, c): a \in A, b \in B, c \in C\}$. To chose an element from this set, you have to fill in 3 "blanks" to make up the ordered triples that are in $A \times B \times C$.

$$
n(A) \times n(B) \times n(C)=n(A \times B \times C)
$$

MORE EXAMPLES:

EXAMPLE: Flip a coin 3 times. Record the results (heads or tails) in the order that they occur. How many elements are in the sample space?
SOLUTION: A typical element in the sample space will look like TTH. representing a tails then a tails then a heads. In general 3 positions have to be filled with T or H .

