#### RANDOM VARIABLES:

A random variable on a sample space S is an assignment of numbers to the elements of S. Each element of S has one number assigned to it by the random variable.

A random variable is a function on a sample space.







11

U ERASE

PE

EXAMPLE: A hat holds 2 green slips of paper, G1 and G2, and 3 red slips, R1, R2, R3. Two slips are removed, one after the other, without replacement. The color and order are recorded and nothing else. Set  $S = \{(R,R), (R,G), (G,R), (G,G)\}$ .



#### Comments:

1) Notation for elements in 5: (G,R) indicates, for example, that a green was selected then a red.



2) You are being told specifically what S is. In previous problems it was your choice. Here it is not.



#### Lecture 13

EXAMPLE: A hat holds 2 green slips of paper, G1 and G2, and 3 red slips, R1, R2, R3. Two slips are removed, one after the other, without replacement. The color and order are recorded and nothing else. Set  $S = \{(R,R), (R,G), (G,R), (G,G)\}$ .



X(R,R) = 20X(R,G) = 30

X(G,R) = 30

X(G,G) = 40







EXAMPLE: A hat holds 2 green slips of paper, G1 and G2,



L' ERASE

X(R,R) = 20X(R,G) = 30X(G,R) = 30X(G.G) = 40NOTATION:

(X= 20) stands for the event that after the procedure is run, the value of X is 20.









Notice that this is how much money you would get (in \$) if the red slips were replaced by \$10 bills and the green by \$20 bills.



EXAMPLE: A hat holds 2 green slips of paper, G1 and G2, and 3 red slips, R1, R2, R3. Two slips are removed, one after the other, without replacement. The color and order are recorded and nothing else. Set  $S = \{(R,R), (R,G), (G,R), (G,G)\}$ 



(X= 20) = {(R,R)} ⊂ S







A

5











L' ERASE

X(G,G) = 40NOTATION:

EXAMPLE: A hat holds 2 green slips of paper, G1 and G2.

and 3 red slips, R1, R2, R3. Two slips are removed, one after

the other, without replacement. The color and order are

(X= 20) = {(R,R)} ⊂ S  $(X=30) = \{(R,G), (G,R)\} \subset S$ (X= 40) = {(G,G)} ⊂ 5



the set of outcomes for which X has the value 40



LI ERASE

EXAMPLE: A hat holds 2 green slips of paper, G1 and G2, and 3 red slips, R1, R2, R3. Two slips are removed, one after the other, without replacement. The color and order are recorded and nothing else. Set  $S = \{(R,R), (R,G), (G,R), (G,G)\}$ 



 $(X=20) = \{(R,R)\}\ (X=30) = \{(R,G), (G,R)\}$  $(X=40) = \{(G,G)\}$ 











PROBLEM: If the slips are drawn at random, find  $Pr[(X=20)] = Pr[\{(R,R)\}]$ 



















10

20

30

40















10

20

30





#### Lecture 13

EXAMPLE: If you were to repeat this process repeatedly, and the 20, 30, and 40 represented your winnings in (\$) on each trial, on average how much money would you make per trial?



EXAMPLE: If you ran the trial many, many times, you would expect to win \$20 on about 3/10's of the trials, \$30 on 6/10's. and \$40 on 1/10. In calculating what average take per trial



should be, you can assume 10 trials that follow the odds exactly:



3 hands will win \$20 each for a total of \$60









EXAMPLE: If you were to repeat this process repeatedly, and the 20, 30, and 40 represented your winnings in (\$) on each trial, on average how much money would you make per trial?



EXAMPLE: If you ran the trial many, many times, you would expect to win \$20 on about 3/10's of the trials, \$30 on 6/10's, and \$40 on 1/10. In calculating what average take per trial

Pr[(X=20)] = 3/10 Pr[(X=30)] = 6/10Pr[(X=40)] = 1/10



follow the odds exactly:



should be, you can assume 10 trials that





EXAMPLE: If you were to repeat this process repeatedly, and the 20, 30, and 40 represented your winnings in (\$) on each trial, on average how much money would you make per trial?



EXAMPLE: If you ran the trial many, many times, you would expect to win \$20 on about 3/10's of the trials, \$30 on 6/10's. and \$40 on 1/10. In calculating what average take per trial



should be, you can assume 10 trials that follow the odds exactly:



1 hand will win \$40 each for a total of \$40









EXAMPLE: If you were to repeat this process repeatedly, and the 20, 30, and 40 represented your winnings in (\$) on each trial, on average how much money would you make per trial?



EXAMPLE: If you ran the trial many, many times, you would expect to win \$20 on about 3/10's of the trials, \$30 on 6/10's and \$40 on 1/10. In calculating what average take per trial

Pr[(X=20)] = 3/10Pr[(X=30)] = 6/10Pr[(X=40)] = 1/10 should be, you can assume 10 trials that follow the odds exactly:









EXAMPLE: If you were to repeat this process repeatedly, and the 20, 30, and 40 represented your winnings in (\$) on each trial, on average how much money would you make per trial?



EXAMPLE: If you ran the trial many, many times, you would expect to win \$20 on about 3/10's of the trials, \$30 on 6/10's and \$40 on 1/10. In calculating what average take per trial



should be, you can assume 10 trials that follow the odds exactly:

$$\frac{3 \times 20 + 6 \times 30 + 1 \times 40}{10} = 28$$

Average amount won per trial.







EXAMPLE: If you were to repeat this process repeatedly, and the 20, 30, and 40 represented your winnings in (\$) on each trial, on average how much money would you make per trial?



LI ERASE

EXAMPLE: If you ran the trial many, many times, you would expect to win \$20 on about 3/10's of the trials, \$30 on 6/10's, and \$40 on 1/10.



$$\frac{3}{10}$$
 x20 +  $\frac{6}{10}$  x30 +  $\frac{1}{10}$  x40 = 28

$$\frac{3 \times 20 + 6 \times 30 + 1 \times 40}{10} = 28$$

Average amount won per trial.



1

EXAMPLE: If you were to repeat this process repeatedly, and the 20, 30, and 40 represented your winnings in (\$) on each trial, on average how much money would you make per trial?



EXAMPLE: If you ran the trial many, many times, you would expect to win \$20 on about 3/10's of the trials, \$30 on 6/10's. and \$40 on 1/10.



$$\frac{3}{10} \times 20 + \frac{6}{10} \times 30 + \frac{1}{10} \times 40 = 28$$
$$\frac{3 \times 20 + 6 \times 30 + 1 \times 40}{10} = 28$$

Average amount won per trial,



U ERASE





EXAMPLE: If you were to repeat this process repeatedly, and the 20, 30, and 40 represented your winnings in (\$) on each trial, on average how much money would you make per trial?



EXAMPLE: If you ran the trial many, many times, you would expect to win \$20 on about 3/10's of the trials, \$30 on 6/10's and \$40 on 1/10.



$$\frac{3}{10} \times 20 + \frac{6}{10} \times 30 + \frac{1}{10} \times 40 = 28$$









DEFINITION: Let X be a random variable on a sample space that takes on values  $x_1, x_2, \dots x_p$ . The expected value of X, called E(X), is given by:

$$E(X) = Pr[(X=x_1)] x_1 + Pr[(X=x_2)] x_2 + \cdots + Pr[(X=x_p)] x_p$$



U ERASE



Lecture 13



DEFINITION: Let X be a random variable on a sample



L' ERASE

Take each value that X takes on, then multiply it by the probability that it will occur. Add up all the numbers you get this way. That is E(X),



Average amount won per trial =

Pr[(X=20)] 20 + Pr[(X=30)] 30 + Pr[(X=40)] 40



Average amount won per trial =

Pr[(X=20)] 20 + Pr[(X=30)] 30 + Pr[(X=40)] 40



In practice, it helps to make a probability density table, listing the values of X and their probability of occurence;











In practice, it helps to make a probability density table, listing the values of X and their probability of occurence;









E(X) = 20 3/10 + 30 6/10 + 40 1/10 = 28

Standard probability Probability density → E(X) function & table



EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).



EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).



SOLUTION: Step 1: What values can X take on?









EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).

SOLUTION: Step 1: What values can X take on? 0, 1, 2, 3. The 3 tosses can result in 0, 1, 2, or 3 heads.



\* 



EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).



SOLUTION: Step 2: write down a "blank table," and then try to fill it in

| try to fill it in. |             |            |
|--------------------|-------------|------------|
| Value of X         | Probability |            |
| 0                  | -           | <b>(b)</b> |





Lecture 13

EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).











#### SOLUTION:

| Value of X | Probability |
|------------|-------------|
| O          | Pr[(X=0)] = |
| 1          |             |
| 2          | _           |
| 3          | _           |
|            | ,           |





#### SOLUTION:

0 1 2

3

| Value of X | Probability             |
|------------|-------------------------|
| 0          | Pr[(X=0)] = Pr[0H&3T] = |
| 1          |                         |
| 2          | _                       |
| 3          | _                       |





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).







#### SOLUTION:

| Value of X | Probability                             |
|------------|-----------------------------------------|
| 0          | $Pr[(X=0)] = Pr[OH&3T] = (.4)^3 = .064$ |
| 1          | = 100 VA 3 8 8 8 9 0 0 0                |
| 2          | _                                       |
| 3          | =                                       |
|            |                                         |





#### SOLUTION:

| Value of X | Probability |
|------------|-------------|
| 0          | .064        |
| 1          | -           |
| 2          |             |
| 3          | =           |
| 3          | =           |





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).







#### SOLUTION:

| Value of X | Probability |
|------------|-------------|
| O          | .064        |
| 1          | _           |
| 2          |             |
| 3          | _           |





#### SOLUTION:

| alue of X | Probability |
|-----------|-------------|
| O         | .064        |
| 1         | Pr[(X=1)] = |
| 2         |             |
| 3         |             |
|           | I.          |





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).

## L/ ERASE PE



| Value of X | Probability             |
|------------|-------------------------|
| 0          | .064                    |
| 1          | Pr[(X=1)] = Pr[1H&2T] = |
| 2          |                         |
| 3          | _                       |





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).

#### SOLUTION:

| Value of X | Probability                        |            |
|------------|------------------------------------|------------|
| 0          | .064                               |            |
| 1          | Pr[(X=1)] = Pr[1H&2T] = C(3,1)(.6) | $(.4)^{2}$ |
| 2          | = 3.6(.4) <sup>2</sup>             | = 288      |
| 3          | =                                  |            |





#### Lecture 13

EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).



| Value of X | Probability |
|------------|-------------|
| 0          | 064         |
| 1          | 288         |
| 2          | _           |
| -          |             |

SOLUTION:

SOLUTION:





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).



#### SOLUTION:

| Probability |
|-------------|
| .064        |
| .288        |
| Pr[(X=2)] = |
|             |
|             |





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).



18





| Value of X | Probability             |    |
|------------|-------------------------|----|
| 0          | _064                    |    |
| 1          | .288                    |    |
| 2          | Pr[(X=2)] = Pr[2H&1T] = | 53 |
| 3          | SAN 122AU 25 25AF       |    |





EXAMPLE: An unfair coin has probability of .6 of landing

from flipping the coin 3 times. Find the probability density





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).



EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).



## SOLUTION:

| Probability |
|-------------|
| -064        |
| .288        |
| .432        |
| -           |
|             |





#### SOLUTION:

| Value of X | Probability |        |                     |
|------------|-------------|--------|---------------------|
| 0          | .064        |        |                     |
| 1          | .288        | 064.   | 288 + .432 = .784   |
| 2          | 432         |        |                     |
| 3          | .216 ←      | - 1784 | (ALL OF THE ENTRIES |
|            | l,          |        | ADD UP TO ONE)      |





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).



#### SOLUTION:

| Value of X | Probability |
|------------|-------------|
| O          | .064        |
| 1          | .288        |
| 2          | .432        |
| 2          | 214         |

This completely describes the probability density function.



57

EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).

EXAMPLE: An unfair coin has probability of .6 of landing

from flipping the coin 3 times. Find the probability density

heads on any given toss. Let X = number of heads that result



SOLUTION: Step 3: Calculate E(X).

| Value of X | Probability |
|------------|-------------|
| 0          | .064        |
| 1          | .288        |
| 2          | .432        |

3

.216

This completely describes the probability density function.





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density



function for X and find E(X).





3



.216

function for X and find E(X).



LI ERASE





### SOLUTION:

| Value of X | Probability | x: Pr(X=xi) |
|------------|-------------|-------------|
| O          | _064        |             |
| 1          | 288         |             |
| 2          | 432         |             |
| 3          | .216        |             |
|            |             |             |



EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Find the probability density function for X and find E(X).





648



#### SOLUTION:

Valu

| Value of X | Probability | x. Pr(X=x.) |
|------------|-------------|-------------|
| 0          | .064        | 0           |
| 1          | .288        | .288        |
| 2          | 432         | .864        |
| 3          | 216         | .648        |
| 100        | 100         | 1.8 = E(X   |







# 61

#### SOLUTION:

| Value of X | Probability | x, · Pr(X=x,) | E(X) = 0(.064)+1(.288)+2(.432)+3(.216)<br>= 0(.064)+1(.288)+2(.432)+3(.216)<br>= 1.8 |
|------------|-------------|---------------|--------------------------------------------------------------------------------------|
| 0          | .064        | 0<br>288      | EASY WAY: 3 x .6 = 1.8 This works in general for a binomial random variable.         |
| 2          | .432        | .864          | E(X) = np                                                                            |
| 3          | 216         | 648           |                                                                                      |
|            |             | 1.8 = E()     | ()                                                                                   |

EXAMPLE: An unfair coin has probability of .6 of landing

heads on any given toss. Let X = number of heads that result







EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Let  $Y = (X - 2)^2$ . Find the probability density function for Y and find E(Y).



| EXAMPLE: An unfair coin has probability of .6 of landing       |
|----------------------------------------------------------------|
| heads on any given toss. Let X = number of heads that result   |
| from flipping the coin 3 times. Let $Y = (X - 2)^2$ . Find the |
| probability density function for Y and find E(Y).              |



| QUESTION: | What values | does Y take on? |
|-----------|-------------|-----------------|
|-----------|-------------|-----------------|

| ue of X | Probability |  |
|---------|-------------|--|
| 0       | .064        |  |
| 1       | .288        |  |
| 2       | .432        |  |
| 3       | 216         |  |



| 63  |  |
|-----|--|
| 0.3 |  |
| 1   |  |

| Value of X | Probabil |
|------------|----------|
| O          | .064     |
| 1          | 288      |
| 2          | 432      |
| 3          | .216     |
|            | l        |





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Let  $Y = (X - 2)^2$ . Find the probability density function for Y and find E(Y).

QUESTION: What values does Y take on?

| Value of X | Probability | Value of Y |
|------------|-------------|------------|
| 0          | .064        | 4          |
| 1          | .288        | 1          |
| 2          | .432        | 0          |
| 3          | .216        | 1          |



65

**EXAMPLE:** An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Let  $Y = (X - 2)^2$ . Find the probability density function for Y and find E(Y).



| Value of X | Probability | Value of Y | y. Pr(Y=y.) |
|------------|-------------|------------|-------------|
| 0          | .064        | 4          | .256        |
| 1          | .288        | 1          | .288        |
| 2          | 432         | 0          | 0           |
| 3          | .216        | 1          | 216         |





#### Lecture 13

EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Let  $Y = (X - 2)^2$ . Find the probability density function for Y and find E(Y).



L/ ERASE



**EXAMPLE:** An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Let  $Z = (X - 1.8)^2$ . Find the probability density function for Z and find E(Z).

EXAMPLE: An unfair coin has probability of .6 of landing

heads on any given toss. Let X = number of heads that result



#### SOLUTION:

| Value of X | Probability | Value of Y | y: Pr(Y=y;) |
|------------|-------------|------------|-------------|
| 0          | .064        | 4          | .256        |
| 1          | 288         | 1          | .288        |
| 2          | 432         | 0          | 0           |
| 3          | .216        | 1          | .216        |
|            |             |            | .770 = E(Y) |





#### SOLUTION:

| Value of X | Probability | Value of Z | z Pr(Z=z) |
|------------|-------------|------------|-----------|
| 0          | .064        |            |           |
| 1          | .288        |            |           |
| 2          | .432        |            |           |
| 3          | .216        |            |           |





**EXAMPLE:** An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Let  $Z = (X - 1.8)^2$ . Find the probability density function for Z and find E(Z).









### SOLUTION:

| Value of X | Probability | Value of Z | zi Pr(Z=zi) |
|------------|-------------|------------|-------------|
| 0          | .064        | 3.24       |             |
| 1          | .288        | .64        |             |
| 2          | .432        | .04        |             |
| 3          | .216        | 1.44       |             |





#### SOLUTION:

| Value of X | Probability | Value of Z | z Pr(Z=z) |
|------------|-------------|------------|-----------|
| 0          | .064        | 3.24       | 20736     |
| 1          | .288        | .64        | .18432    |
| 2          | .432        | .04        | .01728    |
| 3          | .216        | 1.44       | .31104    |





EXAMPLE: An unfair coin has probability of .6 of landing heads on any given toss. Let X = number of heads that result from flipping the coin 3 times. Let  $Z = (X - 1.8)^2$ . Find the probability density function for Z and find E(Z).





EXAMPLE: An unfair coin has probability of .6 of landing



#### SOLUTION:

| Value of X | Probability | Value of Z | zi Pr(Z=zi) |
|------------|-------------|------------|-------------|
| 0          | .064        | 3.24       | .20736      |
| 1          | .288        | .64        | 18432       |
| 2          | .432        | .04        | .01728      |
| 3          | .216        | 1.44       | .31104      |
|            |             | Į į        | .72 = E(Z   |





#### SOLUTION:

| Value of X | Probability | Value of Z | z Pr(Z=z) |
|------------|-------------|------------|-----------|
| 0          | .064        | 3.24       | .20736    |
| 1          | 288         | .64        | .18432    |
| 2          | 432         | .04        | .01728    |
| 3          | .216        | 1.44       | .31104    |
|            | l, l        | ļ          | 72 - F/7  |

Easy way: For a binomial random variable X:







